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Abstract. An experimental arrangement is proposed which combines the idea oftwo-photon 
interferometry with that of geometric phases. A pair of photons generated by parametric 
down-conversion is fed into a pair of Mach-Zehnder interferometers, in each of which 
there is phase shift produced by the helically wound optical fibre in the manner of Tomita 
and Chiao. If the winding angle is a multiple of 2lr there is a closed path in parameter 
space. in accordance wifh the pioneering analysis of Berry. More general windings are also 
considered in which the path in parameter space is not closed, and the geometric phase for 
such open paths is calculated in amrdance with the gauge-invariant prescription of Aitchi- 
son and Wanelik. If the proposed expriment is realized, it will provide a test for the non- 
cyclic geometric phase for photons and for the set of prescriptions equivalent to that of 
Aitchison and Wanelik. Furthermore, the geometric phase in this arrangement will be 
unequivocally quantum mechanical because of the non-dassical character of two-photon 
interferometry. 

1. Introduction 

The path-dependent geometric phase factor in quantum mechanics was anticipated by 
Pancharatnam [ 11 and by Mead and Truhlar [2], among many others [3], and discovered 
by Berry [4] in the context of adiabatically changing environments of physical systems 
as in the celebrated Bom-Oppenheimer treatment of the entanglement of the electronic 
and nuclear variables in molecules. In this context it is a quantal phase associated with 
the stationary states of a system with slow and cyclic variation of its environment 
represented by classical parameters in the Hamiltonian governing the system. Aharonov 
and Anandan [ 5 ] ,  subsequently, reformulated and generalized Berry's result by disre- 
garding the classical parameter space and considering non-adiabatic cyclic paths in the 
projective space of one-dimensional subspaces or rays of an appropriate Hilbert space. 
Using the non-trivial topological strncture [6]  of the projective Hilbert space, which 
has a mathematically natural Abelian connection, they showed that the geometric phase 
is an anholonomy for a parallel transported state-vector along an arbitrary closed path 
in the projective space, and that the geometric phase is independent of the parameteriza- 
tion of this path and of the means (i.e. the Hamiltonian used) by which the transport 
about this path is achieved. Their method of obtaining the geometric phase is completely 
quantum mechanical and purely geometrical in that one does not need the cfassical 
parameters required by Berry to represent the variations of the environment. Further- 
more, it can be shown (at least in some simple models) that the Berry phase can 
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be recovered from the purely quantum mechanical Aharonov-Anandan phase in an 
appropriate correspondence limit [7-9]. 

The geometric phase as defined by Aharonov and Anandan is a quantal phase 
associated with a cyclic evolution of apure quantum mechanical state. If the system of 
interest is a subsystem of a larger composite system then it is not in a definite quantum 
state, and hence a ray or a state-vector can not be assigned to it. The total system may 
be described by an entangled state-vector, which evolves dynamically in accordance 
with the Schrodmger equation. In general, the dynamics of a subsystem can be obtained 
only by forming a statistical operator corresponding to the wavevector of the total 
system and then tracing out the variables of the remainder of the total system. Further- 
more, non-local correlation with no classical analogue can occur between the subsystem 
and the remainder of the total system [IO]. Consequently, a geometric phase associated 
with a subsystem of a total system in an entangled state can not be understood 
classically. 

Tomita and Chiao [ 111 were the first to exhibit a geometric phase associated with 
a linearly polarized photon propagating in a helically coiled optical fibre. Berry [12] 
and others [13] raised the question that this geometric phase might be interpreted 
classically. To answer this objection, Kwiat and Chiao [14] observed the geometric 
phase at the quantum mechanical level by using an entangled pair of photons. They 
prepared incident light in an energy-entangled state of a pair of photons (signal and 
idler) by means of parametric fluorescence in a nonlinear optical crystal. Individually, 
the photon energies in this light were broad in spectrum, but they summed up to a 
sharp energy value because the pair was produced from a single photon with a sharp 
energy value. This entangled state is written as 

J Christian and A Shimony 

IY)i.=JdE 4 E ) l l ) d l ) E - E  (1.1) 

where A(E')=A(E-E') is the complex probability amplitude for finding one photon 
with energy E' in then= 1 Fock state [ I ) = ,  and another photon with energy E - E  in 
then= 1 Fock state I I )E-E.  By employing a phase matching technique the two beams 
of photons were ensured to be horizontally polarized, and then coincidences in the 
detection of conjugate photons were observed. The photon pair is then fed into a 
Michelson interferometer in which one member of each pair acquired a Pancharatnam's 
phase [ I ,  151 (one form of Berry's phase) due to a cycle in polarization states. The 
outgoing state of the light from the Michelson interferometer is written as 

where 
AL 

&-E 
c$(E-E)=2* -++Berry 

is the phase shift arising from the optical path difference AL of the interferometer for 
the photon with energy E - E ,  plus the Berry's phase contribution for this photon. The 
coincidence rate between various detectors is then proportional to the probability of 
simultaneously finding one photon at a detector placed at position r ,  and another 
photon at a detector placed at position r2. If a narrow-band filter centered at energy 
E is placed in front of the detector at r , ,  the coincidence rate becomes proportional to 

1YYb.t ( ~ i , r 2 , t ) I 2 = [ ( v , ,  r2, ~ ~ Y ) Y ~ , ~ ~ ~ O C ~ + C G S  c$ ( 1.3) 
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where the prime denotes the output state after a von Neumann projection onto the 
eigenstate associated with the sharp energy E upon measurement. Consequently, the 
phase 4 is determined at the sharp energy E - E .  Kwiat and Chiao conclude: ‘In the 
light of the observed violations of Bell’s inequalities [16], it is incorrect to interpret 
these results in terms of an ensemble of conjugate signal and idler photons which possess 
definite, but unknown, conjugate energies before EIteringand detection. Any observable, 
e.g. energy or momentum, should not be viewed as a local, realistic property carried 
by the photon before it is actually measured.’ This clearly answers Berry’s question 
regarding the necessity of the quantum description to explain the geometric phase effects 
associated with the optical rotations of photon fields. 

The experiment that we propose in this paper also uses a pair of entangled photons, 
but with entanglement of their linear momenta rather than their energies, in accordance 
with the two-photon interferometric arrangements of Mandel’s school [17], of Home, 
Shimony, and Zeilinger (hereafter abbreviated HSZ) 1181, of Rarity and Tapster [16]. 
and others. Our proposed experiment also aims at greater generalization than that of 
Kwiat and Chiao, because the geometric phases which it exhibits may be non-cyclical 
as well as cyclical, that is, they may be due to open as well as to closed paths in 
parameter space, and consequently in projective Hilbert space. In the experiment of 
Kwiat and Chiao there is a closed path consisting of a cycle in the polarization states 
of the signal photon: from linear polarization to circular polarization and then back 
to linear polarization (at the initial point on the PoincarC sphere). They need to close 
the cycle, because interference fringes are not visible unless the initial and &a1 polariza- 
tions are parallel. As will be seen below, our proposed setup avoids the need for a 
closed path. 

In section 2 we shall review the notion of geometric phases, and summarize the 
manifestly gaugeinvariant prescription of Aitchison and Wanelik for computing the 
geometric phase associated with a general path, open or closed. We shall note the 
virtues of their prescription, particularly the fact that the phase is a function of a path 
in the projective Hilbert space (i.e. the space of rays of a Hilbert space) rather than of 
a path in the Hilbert space itself, and we shall briefly note the relation of their prescrip- 
tion to earlier proposals. Section 3 will present the Tomita-Chiao setup and will outline 
derivation of the geometric phase in this setup, both in the cyclic and the non-cyclic 
case. Section 4 will give a brief review of the relevant parts of two-photon interferometry. 

Section 5 is the core of the paper. In it we propose the incorporation of a pair of 
Tomiti-Chiao helical optical fibres as phase shifters into a two-photon interferometric 
arrangement. The sinusoidal dependence of the coincidence counts upon the geometric 
phases is explicitly calculated in both the cyclic and non-cyclic cases. 

Section 6 is a discussion of the non-classical character of this sinusoidal dependence 
(‘two-photon fringes’) and of the experimental testability of the non-cyclic geometric 
phase for photons obtained by a strictly quantum mechanical analysis. 

Some detailed calculations of the cyclic and non-cyclic geometric phases are rendered 
in the appendix. 

2. Cyclic and non-cyclic geometrical phases 

In Berry’s pioneering work on the geometric phase [4] a time-dependent Hamiltonian 
H ( t )  was considered, with a period 5 ,  i.e. 

(2.1) H(t  + e) = H(t).  
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(In examples the Hamiltonian depends upon parameters, like components of a rotating 
magnetic field, and the parameters change with time satisfying (2.1).) Given an initial 
state-vector Iw(0)) in the Hilbert space, the time-dependent state-vector y(r)> can be 
obtained by solving the time-dependent Schrodinger equation with the specified initial 
condition. If the Hamiltonian changes adiabatically, and In(t)) is a set of hasis vectors 
of H(?) 

J Christian and A Shimony 

H(Oln(0 ) = I n(t) ) (2.2) 

where &(t) is non-degenerate for all n and t ,  then a good approximate solution to the 
time-dependent Schrodinger equation with initial condition I w ( 0 ) )  = In(0)) is 

where the factor in brackets is the familiar dynamical phase, and 

(2.3) 

(2.4) 

Berry’s remarkable observation is that in general the phase y.(t) is non-integrable or 
anholonomic, for in general 

yn(r)fy.(0). (2.5) 

The phase y.(r) is commonly known as the Berry’s phase. Berry showed that y,(.r) is 
gauge invariant in the sense that it is independent of the choice of the eigenvector 
associated with the non-degenerate eigenvalue En(t), provided that one requires single- 
valuedness for the chosen eigenvector. 

There have been many generalizations of Berry’s pioneering work, removing the 
adiabatic condition and the condition of non-degeneracy. Aharonov and Anandan [5] 
devised a generalization which dispensed with any consideration of the periodic path 
in classical parameter space. They considered a cyclic path in the projective space sP(W) 
associated with the Hilbert space W ,  and showed that the Berry phase y.( r )  defined 
by (2.1), (2.2), (2.3), and (2.4) is a special case of the geometric phase with the cycle 
in projective space defined by the solution to the time-dependent Schrodinger equation 
under some specified conditions. One may also regard the parameters of the Hamil- 
tonian as coordinates in the projective Hilbert space, thus labelling quantum states. 
This procedure is completely quantum mechanical. Furthermore, Berry’s adiabaticity 
requirement is no longer needed. It has been shown rigorously for certain model systems 
that the Berry phase can be recovered from the Aharonov-Anandan phase in appropri- 
ate limits [7,8]. 

There have been numerous attempts to generalize the Aharonov-Anandan phase 
so as to define the geometric phase for open paths in the projective space SF’(&‘). We 
shall not review the history of these proposals, but shall merely accept the prescription 
of Aitchison and Wanelik [19], which has all desirable features. Let C:[t, , t2]-tsP(.P), 
so that an unnormaliized vector l Y ( t ) ) e S -  {0} may be considered as tracing an open 
path on the interval [tt , tz]. Then the munifssrly gauge-invariant geometric phase g(C) 
for the path C (whether open or closed) defined by Aitchison and Wanelik is a functional 
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((C) c[lY(t)>] satisfying 

It is easily verified that ( [ [Y(t))]  has the following desired properties: (1) it is 
always real; (2) it is a purely geometric quantity in that its value is reparameterization 
invariant or, in other words, it is independent of the speed with which the path lY(t)) 
is traced out; and most importantly (3) it is projective-geometric in nature, meaning 
that it is the same for all possible paths IY(t)> which project to a given path in the 
projective Hilbert space .P(.P). This last property states that 

t[lW)>l= crz(olw>l (2.7) 
where Z(t )  is any sufficiently smooth C*-valued function oft, C* being the non-zero 
complex numbers. Thus the definition (2.6) for the (cyclic or non-cyclic) geometric 
phase c(C) is justified. As shown by Aitchison and Wane&, their prescription of the 
non-cyclic geometric phase is equivalent to the earlier but more complicated prescription 
(requiring attention to geodesics in projective space) of Samuel and Bhandari [IS]. 

3. The Tomita-Cbiao Setup 

Tomita and Chiao [ 111 have observed the geometric phase for a single beam of photons 
passing through a single-mode, helically wound optical fibre. Their experimental setup, 

LASER 

Figure 1. The ‘Tomita-Chiao optical arrangement to measure the adiabatic geometrical 
phase. 

schematically shown in figure 1, utilizes the adiabatic invariance of the helicity $ *  k of 
the massless spin-I boson, where f is the spin operator and k is the direction of its 
propagation. Unlike a massive spin-I boson, the masslessness of the photon guarantees 
that in the adiabatic limit its helicity remains either +1 or -1. Consequently, the spin 
of the photon always follows the direction k of its propagation. This allows Tomita 
and Chiao to parallel Berry’s adiabatic treatment of spin-t system in a slowly changing 
magnetic field to obtain the geometric phase for a beam of photons passing through 
an environment which adiabatically changes the direction k .  As discussed by Chiao 
and Wu [20], there are at least three cases in which k can change adiabatically: (1) 
when circularly polarized light propagates down a helically wound optical fibre; (2) 
when linearly polarized light propagates down such a fibre; and (3) when microwaves 
propagate down a helically wound circular waveguide. In all three cases there should 
be no sharp kinks in the fibre or waveguide, on the scale of a wavelength, so that the 
helicity of the photon does nat flip sign as it propagates. Furthermore, any linear 
birefringence in the medium, and any ellipticity in the cross-sectional shape of the 
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waveguide, which can cause conversion between states of opposite helicity, are neglec- 
ted. The conditions for adiabaticity are discussed in [ZO], which include L, R,>>d where 
L is the length, R, the radius of curvature, and d the cross-sectional diameter of the 
fibre. 

Let us assume that the light propagates inside a twisting waveguide in a single model 
[ 111 and its optical path is parameterized by t. The adiabatic invariance of the helicity 
of the photon implies that at each instant r ,  the photon’s spin state satisfies 

J Christian and A Shimmy 

&k(t)lk(t) ,  o)=ulk(r), 0) (3.1) 

where U= & I  is the time-independent helicity quantum number of the photon and k( t )  
is its direction of propagation at time t. Equation (3.1) is formally identical to the well 
known example of Berry [4] for a spin s in an adiabatically changing magnetic field 
BW 

gs-B(r)lB(t), m,)=EIW),  ms> (3.2) 

where g is related to the gyromagnetic ratio and m, is the spin component along the 
direction of B(t) .  

In the actual experiment, an optical-fibre of fixed length is wound onto a cylinder 
of a fixed radius to form a helix as shown in figure I .  The pitch angle 0, which is also 
the angle between local waveguide and the helix axes in momentum space, traces out 
a curve Con the surface of a sphere corresponding to the fibre path. The Berry phase, 
in the present case of a massless spin-1 particle, may be obtained by considering a time- 
dependent problem in momentum space. As long as we stick to the momentum space 
of the photon, and as long as there are no sources in the vicinity, we can consider the 
Schrodinger equation. 

(3.3) 
d 

i; I~(o)=E~(~) I~(o)  

in the uszial quanrum mechanical sense [21], where &t) is the Hamiltonian operator. 
The evolution of the spin of the photon is governed by a Hamiltonian 

&)=Go + Lzs^.  k ( t )  (3.4) 

where-1 is the coupling constant related to the optical activity coefficient of the fibre 
and H,lk(t))=Eolk(t))  defines the background propagation [ZO] (also see [8] for 
derivation of this Hamiltonian). This is the most general Hamiltonian which can be 
formed from the two vectors 3 and k( t )  in the waveguide for a massless spin-1 particle 
in an isotropic medium with an isotropic cross-sectional boundary. The wavevector 
k(r ) ,  according to figure 1, can be expressed in Cartesian coordinates as 

k(r) =k[f sin 0 cos $( t )  + j  sin 0 sin $ ( t )  + i cos e]. (3.5) 

&#(t))  =fio+ns^+($(t)) (3.6) 
with varying parameter $. Then, following Berry [ 141, the excursion of the system 
between times t = O  and t = r  can bepictured a5 transport round a closed path $ ( t )  in 
parameter space, with Hamiltonian H($( t ) )  and such that $ ( r )  = $(O). In what follows, 
we take $(O)=O and b(z) =2n. For the adiabatic bpproximation to apply, z must be 
large. The state-vector Ik(t)) of the system now evolves according to the Schrodinger 

The Hamiltonian of (3.4) can now be written as 
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equation 

d 
i z  Ik(t))=Ei($(t))lk(t)). (3.7) 

At any instant, the natural basis consists of eigenstates LEn($)) of &$) for $ = $ ( t ) ,  
that satisfy 

&($)I E" ($1 ) = E. ($9 E" (6 ) )  (3.8) 

with energies E.($). Then, for a complete cycle c, Berry's phase in the present case of 
a photon is shown in the appendix to be 

y,(c) = ~ 2 R ( i  -cos e) (3.9) 

where the subscripts * specify eigenstates of + or - helicities. As discussed above, we 
have excluded n = 0 as a consequence of masslessness of photon. 

Next, we modify the above arrangement to exhibit geometric phases for non-cyclic 
variations of quantum state vectors. We consider a more general winding in which the 
winding angle $ is <2n, so that the photons are propagated through only a portion of 
the helix. This implies that the path in parameter (momentum) space is open, and the 
geometric phase acquired by the state-vector of the photon is of a non-cyclic type. As 
discussed in section 2, there are several formulations of the non-cyclic geometric phase 
equivalent to that of Aitchison and Wanelik [29] expressed in (2.6), hut theirs belongs 
to the set of manifestly gauge-invariant prescriptions. Using this general definition we 
obtain the geometric phase difference y($( t ) )  between the initial state-vector Ik(0)) 
and the adiabatic state-vector Ik(t))=e''(+(')) IE,($(t))) at an arbitrary point 4(f) on 
the Tomita-Chiao optical fibre to be 

It is worth re-emphasizing that the geometric phase given by the expression (3.10) for 
the open path Ik($(t)))  on the interval [$(O), $ ( t ) ]  is manfestb gauge invariant. Upon 
using Ik($(t))) =e'"'"'"lE.($(t))), the expression (3.10) immediately yields 

%($(f))= s.($(t))+i (3.11) 

where 

(3.12) 

Using reparametrization invariance of (3.10), the geometric phase of (3.1 1) can equiva- 
lently be written as 

(3.13) 
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with @(O) =O. As obtained in the appendix, this phase is explicitly expressed as 

r*(e, 4) =&(e, 6)  k# cos e itan-’(cos e tan 4) 

J Christian and A Shimony 

(3.14) 

with 

(3.15) 

obtained by using the eigenkets / E ( $ ) )  of (A.4) from the appendix. Equation (3.14) 
reduces to (3.9) for cyclic evolutions as expected. 

At this juncture it should he noted that non-cyclic geometric phases in the framework 
of Samuel and Bhandari [ 151 have already been observed in various physical situations. 
For instance, Weinfurter and Badurek have observed the geometric phase effects for 
non-cyclic evolutions of thermal neutrons [22]. The experiment of Kwon et a1 is of 
particular relevance in the context of linearly polarized photons [23]. They injected a 
beam of linearly polarized photons down a uniformly wound half-turn single-mode 
optical fibre with various pitch angles, just as in the original Tomita-Chiao experiment. 
However, the use of the half-turn helix (which means @=r in our notation) allowed 
them to observe the phases for open cycles. Their experiment, however, is subject to 
the same objections as that raised by Berry [12] and others [13] regarding the original 
Tomita-Chiao experiment; i.e. the phases they observed can be understood most natu- 
rally in terms of classical electromagnetism, and a quantum mechanical description of 
the rotation of the plane of polarization in their experiment is not necessary. Further- 
more, even before the Tomita-Chiao experiment, rotation of the plane of polarization 
of linearly polarized light travelling down a single-mode optical fibre (with or without 
parallel ends, i.e. with or without a complete cycle) was studied by Ross [24] and 
Haldane [25] at the classical level and shown to agree with experiments. Thus, the 
experiment of Kwon et a1 has no conceptual improvement over the previous works of 
Ross and Haldane. 

To ensure gauge-invariance and actually to compute the geometric phases for open 
paths, Kwon et ai, used the ‘geodesic rule’ of Samuel and Bhandari [ 151. We, on the 
other hand, use the conceptually more clear and manifestly gauge-invariant prescription 
of Aitchison and Wanelik, which naturally incorporates the geodesic rule. As a matter 
of fact, the equivalence of the Samuel-Bhandari method with the prescription of Aitchi- 
son and Wanelik has been shown by various authors [ 191. Therefore, it is not surprising 
that the results of Kwon et a1 for the half-turn (their equation (1)) and the quarter- 
turn (their equation (2)) fibres agree with our (3.14) above, for the physical range 0 
<e <n/2 of the pitch angle, upon substitutions of q5 = r and 4 = n/2. These substitu- 
tions must be made because they consider only the half-turn and the quarter-turn fibres, 
whereas our formula (3.14) is for any 4, ie. for any arbitrary interval on the fibre. 

The above considerations, then, give us strong reasons to stress the quantum mech- 
anical aspect of our proposal below as well as the fact that we use a conceptually 
superior prescription to obtain the non-cyclic geometric phases. 

4. Review of two-photon interferometry 

Let us consider photon pairs produced by parametric down-conversion, a process in 
which a single photon incident upon a crystal gives rise to a pair of non-locally correlated 
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photons [26]. We use the general arrangement for two-photon interferometry proposed 
by HSZ [ 181 in which an ensemble of particle pairs is emitted by a source into the beams 
A ,  B, C, D, with wavevectors k a ,  k B ,  kc,  and k D ,  satisfying 

kA + kc= kD+ kB= k (4.1) 

where k is the wavevector of the incident beam. Each pair in the ensemble is in the 
quantum state 

(4.2) 

where ( k J l ,  Ik&, [ k D ) ] ,  lkB)2, are the approximate eigenvectors oflinear momentum 
operators, and 

1k.d =Ikol lkal = lkcl, (4.3) 

The detailed arrangement is shown in figure 2 in which U, and V, are detectors, with 
index i= 1,2 labelling the particle that is registered in the respective detector. 

Figure 2. The arrangement of HSZ for two-photon interferometry with variable phase 
shiiters. 

The state 1") in (4.2) describes a coherent superposition of two distinct pairs of 
correlated paths for particles 1 and 2: (I) particle 1 in beam A and particle 2 in beam 
C, and (11) particle 1 in beam D and particle 2 in beam B. In the pair (I), particle 1 in 
beam A is reflected from mirror M A  to phase shifter a l  en route to half-silvered mirror 
N I ,  from which it proceeds either to detector Ul or to detector VI; while particle 2 in 
beam Cis reflected from mirror Mc to half-silvered mirror N z ,  from which it proceeds 
to detectors Uz or VZ. In the pair (11), on the other hand, particle 1 in beam D proceeds 
to U, or VI via MO and N x ,  while particle 2 in beam B proceeds to U2 or V2 via M E ,  
a 2 ,  and N, .  Thus, the beams A and D of particle 1 are given a variable relative phase 
shift a1 before recombination near the point 0, on the beam splitter N I ,  whereas the 
beams Band C of particle 2 are given a variable relative phase shift a2 before recombina- 
tion near the point O2 on the beam splitter N z .  From (4.3) it follows that the frequencies 
of the two interfering beams at NI are equal, and the frequencies of the two inte;fering 
beams at Nz are equal, even though the frequencies at NI and N2 are unequal. The 
observed quantities of interest are the two-photon coincident count rates, as functions of 
relative phases a1 and a*, predicted by quantum mechanics. These quantum-mechanical 
probabilities for joint detection of particles 1 and 7. are proportional to the absolute 
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square of the total amplitudes obtained by the superpositions of the amplitudes associ- 
ated with each of the two pairs of correlated paths. For example, if the detectors have 
quantum efficiency ?J then the quantum-mechanical probability for joint detection of 
particles 1 and 2 by detectors VI and U,, when phase shifts a1 and a2 have been chosen, 
is 

J Chrisrian and A Shimony 

times the absolute square of the total amplitude: 

Here, the factors eiaL and einr arise from the phase shifters encountered along the respec- 
tive paths, and the factors i/a and l/$ arise [27], respectively, from reflection and 
transmission at the beam splitters. The subscripts 1 and 2 on the parentheses in (4.4) 
refer to a path of particle 1 and the correlated path of particle 2, respectively. The 
phase factor eip depends upon the detailed placement of the mirrors and beam splitters 
and is independent of a ,  and a*. Using (4.4) and analogous equations for the amplitudes 
A(VI, V21a~,a2) ,  A(Ul, Vzlal,az),  and A(Vl, U21al,nz), the quantum-mechanical 
probabilities for the joint detection by the detector pairs (Ul, UZ), (VI, VZ), (U,, V2), 
and ( V I ,  UZ), respectively, can be obtained as q2 times the absolute squares of these 
amplitudes. The results are 

P(Ul, U2la1, ad=P(Vl,  V2Ial,a2) 

and 

(4.54 

(4.56) 

It is evident from the sinusoidal dependence of these probabilities that the interference 
fringes. the signature of quantum phenomena, can be exhibited by monitoring the 
coincidence count rates while varying the phase shifts a I  and a2.  Note that, as empha- 
sized by HSZ, only the coincidence count rate exhibits interference fringes since the count 
rate of each of the four detectors singly is constant, independent of a ,  and a2: 

P(Ul I a I ,  a2) = P( VII a I I ad 

=P(UZIQI, 0 2 )  

?J =P(V21al, a2)=- 
2 

which is a direct consequence of the entangled character of the state 1") 

14.6) 

S. Non-cyclic geometric phase io two-photon entangled state 

Now, to obtain the effect of the geometric phases associated with the two subsystems, 
namely the photons 1 and 2, in the Hszarrangement discussed above, we propose to 
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replace the phase shifters a ,  and a2 by two Tomita-Chiao apparatus providing the 
geometricphase shifts yL=y*(Ol) and y i = y + ( 0 2 ) .  Here 0 ,  and &are thecolatitudes 
of the wavevector k in momentum spaces of photons 1 and 2, respectively, in the 
geometries of Tomita-Chiao apparatus discussed above; and the circularly polarized 
light with definite helicity + or - could he obtained by inserting quarter-wave plates 
4.4, q B ,  qc, qo in the beams A ,  B, C, D of linearly polarized photons emerging from the 
source S of figure 2. These geometric phase effects will be seen in the probability 
expressions of equations (4.5~) and (4.56). The final experimental arrangement is shown 

Figure 3. Final arrangement of the experimental setup to measure cyclic and non-cyclic 
geometric phases after replacing the phase shifters in the HSZ arrangement by the Tomita- 
Chiao apparatus and inserting quarter-wave plates q A ,  qs. qc. qD. 

in figure 3. The dynamical phase factors of the two arms of the interferometers, which 
have equal optical path lengths, are the same, and do not enter into the coincident 
counts given by (4.5~) and (4.56). Even if these dynamical phase factors are unequal 
and depend upon the detailed placement of the mirrors and beam splitters, they would 
not affect the changes of geometric phase differences. This can be easily seen by compar- 
ing (4.4) with (4.5a) and (4.56), and observing that the phase factor eip of (4.4), which 
depends upon the detailed placement of the mirrors and beam splitters, has only a 
trivial effect (namely a uniform shift) on the probabilities for the joint detections given 
by (4 .5~)  and (4.56). On the other hand, however, the optical fibres 4 and C, shown 
in figure 3 are quite essential to compensate for the path lengths of the helical fibres. 
The compensating fibre C, (CZ) is identical to that providing the phase shift r: (y:) 
except that the cylinder on which it is wound has a vanishingly small radius compared 
to the radius of the cylinder on which the fibre producing the phase shift y: ( y : )  is 
wound. The vanishingly small radius guarantees almost zero solid angle subtended by 
the k-vector in the momentum space implying negligible geometric phase shifts. In the 
non-cyclic case, unlike the cyclic case, the geometry of the final arrangement shown in 
figure 3 has to be slightly modified because, in general, the directions of the input and 
output beams for the Tomita-Chiao apparatus will not be the same. 

It might appear, at first sight, that OUT usage of the Berry’s formalism to obtain the 
geometric phase for a subsystem of an entangled composite system is inadequate because 
the usual Berry phase is defined only for pure quantum-mechanical states, whereas the 
subsystem by itself is in an indefinite or mixed state. This is not the case, however. Since 
there is no interaction among the subsystems of the considered two-photon entangled 
composite system, the total Hamiltonian &(t) for the composite system can always 



5562 

be split as 
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~ , . , ~ ( t ) = ~ , ( r ) @ l  +1QH2(t) (5.1) 

where Hj(t) ,  j= 1, 2, is the Hamiltonian of the subsystem j alone and is an operator on 
the Hilbert space corresponding to that subsystem. This splitting of the total Hamil- 
tonian allows us to write the SchrBdinger-type equation 

(5.2) 
d 

i - lk f ( t ) ) j=H/ ( t ) lkdt ) ) j  dt 

for each of the eigenvectors Ikdt)), ( l = A , D  i f j = l ,  l = B ,  C i f j=2)  of the entangled 
state of (4.2), rendering our usage of the usual Berry's formalism adequate. The dynam- 
ical equations (5.2) follow from the evolution operator for the composite system: 

U(t)  5 T exp[ -i lo' H,.,,(f') df'] 

=Texp[-i[o'H,(fr) dt']@Texp[-i lo'H2(t') dt'] (5.3) 

where T stands for time-ordering. This factorizability of the time evolution operator 
can be checked by series expansion. Now the composite system is represented by the 
pure quantum state 

as in (4.2) of section 4. Then, from (5.3) and (5.4) we obtain a vector representing the 
state of the composite system at an arbitrary time f :  

IW> = - ~ 0 ) I W o ) )  

6Texp{-i ~a'H2(r ' - ro )  dr' I Ik&))2 

+ T exp[ -i jo' Hl(t' - to) df)l k ~ ( t a ) ) t  

(5.5) 

We conclude this section by emphasizing that the possibility of unequivocal observa- 
tion of non-cyclic geometric phases for individual photons propagating in twisted dielec- 
trics is the most novel feature of our proposed arrangement. As far as we know, no 
such experiment at the quantum mechanical level has yet been carried out. Conse- 
quently, here we have essentially a novel prediction which deserves to be experimentally 
tested. 
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6. Discussion: Non-classical nature of the geometric pha& 

In this paper we have successfully answered Berry’s reservations [I21 regarding the 
experiment of Tomita and Chiao to measure geometric phases for photons, and have 
demonstrated the truly quantum-mechanical geometric phase effects associated with 
correlated photons spiraling around helical fibres. That the geometric phases obtained 
above are truly quantum-mechanical in nature is exhibited by (4.5) and (4.6), which 
express the non-classical, entangled character of the two-photon state. Moreover, a 
Bell-type inequality can be derived for these arrangements [ZS], which puts classical 
probabilities in conflict with (4.5) and (4.6). After the insertion of the Tomita-Chiao 
phase shifters in the Hsz-arrangement, these equations of the quantum-mechanical 
probabilities for the joint detection read 

= +-; Cos( r: - r: t 41 
and 

= P ( U 2 l r : ,  yz,) 

= p  VZIYC, Ya --. ( 2 

(6.1~) 

(6.lb) 

As emphasized by HSZ, this phenomenon of constant count rate of each of the four 
detectors singly is a direct consequence of the entangled character of the state of the two- 
photon composite system. Furthermore, it can be shown that entanglement guarantees a 
violation of a Bell inequality, and hence of classical probabilities [29]. 

The above discussion is, then, sufficient to render Berry’s reservations [ 121 irrelevant 
for the experimental procedure proposed here to measure geometric phases. Berry’s 
essential point is that the geometric phase effects associated with the optical rotations 
of photon fields can be most appropriately described at the level of classical eletromagne- 
tism. Although this is true in most of the optical experiments performed so far to 
measure geometric phases (with the exception of the Kwiat and Chiao experiment [14]), 
it is not possible to give a classical description of the experimental procedure proposed 
here due to the entangled character of the considered composite system. Incidentally, 
Silverman has examined the Aharonov-Bohm effect in two solenoids with correlated 
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particles [30] which has some similarity with our proposal. He, however, deals with 
only closed paths for charged particles in the physical space, whereas we consider partial 
cycles in the momentum space of photons. 

A clarification of a potentially confusing point is in order here. Our experimental 
arrangement proposes to test the non-cyclic geometric phase not for a single Tomita- 
Chiao helix but for two of them in tandem, and what enters into the probability 
expressions (6 . la)  and (6.16) is the difference between the two geometric phases. Does 
this weaken our test? Could it be that the difference between two phases is really a 
cyclical phase in disguise? The answer to both questions is no. The use of two helices 
is not essential for the argument. In fact, one can make the geometric phase due to one 
of the helices negligible (like the compensators), or even replace it by another type of 
phase shifter (like a variable glass plate.) The usage of two Tomita-Chiao helices instead 
of only one is for the generality and symmetry of the proposed arrangement. It allows 
freedom and convenience in the realization of the experiment. It is true that what would 
ultimately be measured is a relatiue phase between the two arms of the interferometer. 
But the point is that the geometric phase changes which appear in the expressions for 
the joint detection probabilities are generated by non-cyclic variations in the parameter 
(momentum) space of the subsystem of the composite system. 

In addition to giving strictly quantum-mechanical geometric phases, as we saw in 
section 5, the general arrangement we have proposed here also allows us unambiguously 
to obtain gauge-invariant non-cyclic phases for entangled photon states. The prediction 
of this effect for entangled subsystems is the central thesis of the present paper and 
provides an experimental test for non-cyclic geometric phases. To our knowledge there. 
has not been so far any test of a strictly quantum mechanical prediction of a non-cyclic 
geometric phase for photons. 

J Christian and A Shintony 
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Appendix. Calculations of cyclic and non-cyclic Berry phases 

In this appendix we shall explicitly obtain the Berry phase given by (3.9) for cyclic 
evolution of photons in a helical fibre, as well as the non-cyclic version of such phase 
given by (3.14). 

The most general Hamiltonian which can be formed from the two vectors 3 and 
k(r) in the considered optical waveguide for a massless spin-1 particle is 

(A.1) 
as in (3.8). Now, let us look for instantaneous eigenvalues and eigenvectors of this 
Hamiltonian : 

I?( 4) = & + A&k( #), 

fi(4) I E ( 4 ) )  = a b )  I E(4)> 
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with 

&=EO[ !) 
where go defines the background propagation. If we use the representations 

1 o o j  [ O  o +] [ O  

-i :) s,= 0 0 S,= 0 0 0 and S;= +i 0 (A.2) 

0 +i 0 -i 0 0 0 0 0  

for the spin-1 operators and k(#) from (3.5), then the eigenvalue problem can be written 
as 

Eo -iAk cos 0 i;vC sin B sin @ 

(A.3) 

iak cos 0 Eo 
-iX sin 0 sin # i X  sin 6’ cos @ Eo i 

The eigenvalues are 0, Eo -k a, and Eo - a, and the eigenvectors for E(#) =I?+ * Ak are 

(A.4) 

Here we have neglected the eigenvalue E(#)  = O  and the corresponding eigenvector as 
a consequence of masslessness of photon discussed in the text. From these eigenvectors 
one can compute 

F cos e + i sin’ e sin # cos # 
i (sin2 e sin2 # - 1) 

i sin 0 cos # + i  sin 0 cos B sin # i 1 
(2 - 2 sin’ e sin’ 6)’” IE(#) =Eo& a) - 

This gives the geometric phase 
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Now, for a complete cycle, $=2n, and to obtain the geometric phase in this case we 
must evaluate the definite integral 

J Christian and A Shimony 

From the table of definite integrals ([31] item 15.43) 

2n 

Therefore 
27T I =  -277 f 

Substituting a= l/sin 0 and rearranging yields 

27T I=-  (I  --cos e). 
cos e 

Hence, the geometric phase for a complete cycle is 

y,(e) = ~27T(i -COS e) 
with 0 as a pitch angle of the phase shifting helix. 

For a partial cycle, 4#2z, we are faced with an indefinite integral 

(A.lO) 

(A.ll) 

with a= I/sin 8. Using the table of indefinite integrals ([31] item 14.363) we have 

(A.13) 

Substituting a= l/sin 8, evaluating from 0 to 4, and rearranging yields 

Hence, the geometric phase for non-cyclic evolution in the optical fibre is given by 

Yi(e, 4)  = &(e, 4)  i 4 COS e F tan-'(cos @'tan 4)  ( A M )  
as in (3.14) in the text, with 6,(6', 4)  given by (3.15). Equation (A.15) reduces to 
(A. 11) for cyclic evolutions as expected. 
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